
Multifrequency control of Faraday wave patterns

Chad M. Topaz*
Department of Mathematics, UCLA, Los Angeles, California 90095, USA

Jeff Porter
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Mary Silber
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA

(Received 17 June 2004; published 14 December 2004)

We show how pattern formation in Faraday waves may be manipulated by varying the harmonic content of
the periodic forcing function. Our approach relies on the crucial influence of resonant triad interactions cou-
pling pairs of critical standing wave modes with damped, spatiotemporally resonant modes. Under the assump-
tion of weak damping and forcing, we perform a symmetry-based analysis that reveals the damped modes most
relevant for pattern selection, and how the strength of the corresponding triad interactions depends on the
forcing frequencies, amplitudes, and phases. In many cases, the further assumption of Hamiltonian structure in
the inviscid limit determines whether the given triad interaction has an enhancing or suppressing effect on
related patterns. Surprisingly, even for forcing functions with arbitrarily many frequency components, there are
at most five frequencies that affect each of the important triad interactions at leading order. The relative phases
of those forcing components play a key role, sometimes making the difference between an enhancing and
suppressing effect. In numerical examples, we examine the validity of our results for larger values of the
damping and forcing. Finally, we apply our findings to one-dimensional periodic patterns obtained with im-
pulsive forcing and to two-dimensional superlattice patterns and quasipatterns obtained with multifrequency
forcing.
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I. INTRODUCTION

Parametrically forced surface waves have proven to be a
rich and versatile source of patterns since their initial obser-
vation by Faraday in 1831[1]. These Faraday wave patterns
are composed of standing waves set up in response to peri-
odic vertical vibration of sufficient strength. Early investiga-
tions (see[2,3] for reviews) used a sinusoidal forcing func-
tion and focused on simple patterns such as stripes, squares,
and hexagons, which oscillate in subharmonic response to
the forcing. Recently, experimentalists have used multifre-
quency forcing to generate more complex states such as qua-
sipatterns and superlattice patterns[4–11]. These observa-
tions have, in turn, fueled theoretical interest in such patterns
and in multifrequency forcing[12–19].

The use of multifrequency forcing requires the selection
of a large number of control parameters. The forcing fre-
quencies, their amplitudes, and their relative phases may all
affect the pattern formation problem in a nontrivial way
[4,13,19,20]. Further complexity arises from the presence of
multiple length scales. In addition to the length scales driven
by the various forcing frequencies in accordance with the
parametric(i.e., subharmonic) resonance conditions, there
are numerous damped modes that are drivennonlinearly.
Many of these can significantly influence the dynamics of the
critical modes. For instance, in the case of two-frequency

forcing, the damped mode that oscillates at the so-called dif-
ference frequency is important for selecting superlattice pat-
terns[18].

Resonant triad interactions—the lowest order nonlinear
interactions—provide a useful framework for investigating
the relationship between the many control parameters and
length scales in the multifrequency forced Faraday wave
problem. Resonant triads that couple two critical modes with
a damped, spatiotemporally resonant mode play a key role in
the nonlinear pattern selection process. Most of these
damped modes function as energy sinks, effectively creating
an antiselection mechanism that suppresses the triad interac-
tion and thereby favors patterns which avoid the correspond-
ing resonant angle. However, other damped modes act as
energy sources, providing a positive selection mechanism
that helps stabilize patterns involving the associated resonant
angle. The effect of different damped modes on pattern se-
lection is investigated in[20], which, for forcing functions
with up to three frequency components, determines the most
important damped modes, their effect(enhancing or sup-
pressing) on associated patterns, and the dependence of the
nonlinear interaction on the forcing frequencies, amplitudes,
and relative phases. These results are used to interpret recent
Faraday wave experiments that produced complex patterns,
namely, a two-frequency forced superlattice pattern in[7]
and a three-frequency forced quasipattern in[11]. The ap-
proach developed in[20] follows from a systematic consid-
eration of weakly broken symmetries: time translation, time
reversal, and Hamiltonian structure(see[19]), and is there-
fore most relevant for systems with weak damping and forc-*Electronic address: topaz@ucla.edu
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ing. In this limit the vastness of the control parameter space
can be an asset, enabling one to enhance or suppress particu-
lar triad interactions simply by tuning the appropriate forcing
parameters.

In this paper, we adopt the same prescriptive approach to
Faraday wave pattern formation, describing in more detail
the technique for exploiting weakly broken symmetries, and
extending the results of[20] to forcing functions containing
arbitrarily many Fourier components. We determine which
damped modes are favored by a strong nonlinear coupling
and tabulate how the corresponding resonant triad interac-
tions depend on the forcing parameters. A somewhat surpris-
ing result, which makes this project feasible, is that for a
given damped mode there are at most five out of the poten-
tially infinite number of forcing frequency components in the
forcing function that affect the resonant triad interaction at
leading order in the damping parameterg (defined below).
We investigate numerically the validity of our predictions
with respect to the smallg assumption. This is important for
understanding the extent to which the symmetry-based pic-
ture we develop here can be applied to realistic experiments.
We then use several different numerical examples to illus-
trate how the resonant triad interactions most relevant to pat-
tern formation may be controlled through a judicious choice
of forcing parameters.

The remainder of this paper is organized as follows. In
Sec. II, we review basic ideas concerning the importance of
resonant triad interactions to Faraday wave pattern forma-
tion, including a discussion of some of the previous theoret-
ical work. Section III contains our symmetry-based analysis.
We enumerate the most important weakly damped modes,
calculate their effect on pattern formation, and determine the
dependence of this effect on the forcing parameters. Section
IV contains a general discussion of the symmetry-based re-
sults. We study their range of validity with respect tog by
comparing the symmetry-based predictions to numerical re-
sults obtained using the Zhang-Viñals Faraday wave equa-
tions[21]. In Sec. V, we apply our symmetry-based results in
several examples. In the first application, we consider
weakly nonlinear periodic patterns forced by a repeated se-
quence ofd functions of alternating sign. In accordance with
the results first reported in[22], we demonstrate how, by
varying the spacing between the pulses, we may control the
amplitude of the pattern. In the second application, we show
how to construct a five-frequency forcing function which
leads to dramatic stabilization of a complex pattern, namely,
an SL-I superlattice pattern of the type observed in[7]. In the
third example, we conjecture about a seven-frequency forc-
ing function which should be conducive to the experimental
observation(as yet lacking) of 14-fold quasipatterns. We
summarize and conclude in Sec. VI.

II. BACKGROUND

We lay the groundwork for our results here by reprising
basic ideas from[16,18–20,23,24] on the role of resonant
triads in Faraday wave pattern formation. We consider Fara-
day waves on an unbounded horizontal domain subjected to
an arbitrary periodic forcing functionfstd. We use a dimen-

sionless timet such that the common frequency is 1, and
expandfstd in a Fourier series:

fstd = o
uPZ+

fue
iut + c.c., fu P C, s1d

whereu=m,n,p, . . . are theforcing frequencies(distinct and
coprime), ufuu are the forcing amplitudes, andfu=argsfud are
the corresponding phases. Without loss of generality, we take
m to be the “dominant” frequency, i.e., we assume thatfm (to
lowest order) is the component that drives the critical modes
(this does not necessarily mean thatufmu is the largest of the
ufuu). There exists a bifurcation pointufmu= ufmucrit which de-
pends on the physical properties of the fluid, and on the other
fu, below which the quiescent fluid state is stable to pertur-
bations of all wave numbers, and at which perturbations of
(generically) one critical wave numberkc become neutrally
stable. We consider the properties of resonant triads in a
vicinity of this bifurcation in parameter space.

Three-wave, or triad, resonance is the simplest nonlinear
mechanism by which different waves may interact. The three
waves involved have Fourier wave vectorsk j, j =1,2,3,sat-
isfying

k1 + k2 = k3. s2d

In this paper we are interested in the influence of the damped
modes that are driven nonlinearly(through resonant triad
interaction) by the critical modes. Hence two of the wave
vectors have the critical valueuk1u= uk2u=kc. These waves, to
first approximation, respond subharmonically to the domi-
nant forcing componentm and thus oscillate with predomi-
nant frequencym/2. The third wave in the triad has wave
numberuk3u=kd and is associated with a damped mode with
dominant frequencyV. The values ofV most relevant to
Faraday wave pattern formation are determined in Sec. III.
Figure 1 shows Fourier space diagrams corresponding to the
resonant triad we have described. Through simple trigonom-
etry, the condition(2) defines an angle of spatial resonance
uresP f0° ,180°d between the two critical modes:

FIG. 1. Fourier space diagram of spatially resonant triads satis-
fying Eq. (2). The two neutrally stable modes have wave number
uk1u= uk2u=kc and oscillate with dominant frequencym/2. The
damped mode hasuk3u=kd and oscillates with dominant frequency
V. (a) kd,kc. (b) kc,kd,2kc.
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cos
ures

2
=

kd

2kc
. s3d

We exclude the caseures=120° since this corresponds to
hexagons andkd would then not be damped.

In the presence of damping, the primary Faraday instabil-
ity leads to standing waves(SW). We associate with the
wave vectorsk j three complex amplitudesAj which describe
the slow-time evolution of the three standing wave modes
indicated in Fig. 1(the fast-time subharmonic oscillation of
the waves has been factored out; see, e.g.,[16]). Evolution
equations for theAj can be obtained by applying a standard
reduction procedure to the governing equations, as we shall
do in Sec. V. However, at this point we are concerned only
with the form of these equations, which is determined by the
spatial symmetries. The action of spatial translation is

TQ:Aj → Aje
iu j , s4d

Q = su1,u2d, u1,u2 P f0°,180°d, u3 = u1 + u2,

while a reflection aboutk3 leads to

k:A1 ↔ A2, s5d

and a rotation by 180° acts as

R:Aj → Āj . s6d

Equivariance under these three symmetries(see, e.g.,[25])
requires that the differential equations describing the dynam-
ics of theAj take the form

Ȧ1 = L1A1 + a1Ā2A3 + sauA1u2 + b0uA2u2 + b1uA3u2dA1,

s7ad

Ȧ2 = L1A2 + a1Ā1A3 + sauA2u2 + b0uA1u2 + b1uA3u2dA2,

s7bd

Ȧ3 = L2A3 + a2A1A2 + sb2uA1u2 + b2uA2u2 + b3uA3u2dA3,

s7cd

to cubic order. The overdot represents differentiation with
respect to a slow time scale. All coefficients are real.

Because at the bifurcation pointA1 and A2 are neutrally
stable modes andA3 is linearly damped(i.e., L1=0 andL2
,0), a center manifold reduction can be used to eliminate
A3. We find

A3 = −
a2

L2
A1A2 + ¯ , s8d

in a neighborhood of the origin. The(unfolded) bifurcation
problem, to cubic order, becomes

Ȧ1 = L1A1 + auA1u2A1 + bsuresduA2u2A1, s9ad

Ȧ2 = L1A2 + auA2u2A2 + bsuresduA1u2A2, s9bd

where

bsuresd = b0 + bres, bres= −
a1a2

L2
. s10d

The coefficientbsud is the cross-coupling coefficient for SW
oriented at an angleu relative to each other and, above, it is
evaluated at the angle of spatial resonanceu=ures indicated
in Fig. 1. The resonant contributionbres arises from the pres-
ence of the dampedkd mode.

The resonant angleures ranges from 0° to 180° askd var-
ies from 2kc to 0. Whenkd is such that the natural frequency
Vskdd of the damped mode equals(or is nearly equal to) one
of the special values that promotes a strong nonlinear cou-
pling (as determined in Sec. III) the contributionbres to
bsuresd can be significant. This typically happens whena1

anda2 become large in magnitude, and/or whenL2 becomes
small in magnitude. The resonant contribution will then have
a major effect on the stability of associated patterns.

Consider further the system(9) which has as steady-state
solutions the trivial stateuA1u= uA2u=0, the symmetry-related
“striped” statesuA1u.0, uA2u=0 anduA2u.0, uA1u=0, and the
“rhombic” mixed-mode solutionuA1u= uA2u. We assume that
a,0, so that the bifurcation to the striped state is supercriti-
cal. A straightforward analysis yields the following stability
results summarized by Fig. 2. Forb sufficiently negative, i.e.,
b=b0+bres,a, the (supercritical) branch of rhombic states
with angle ures is unstable. Ifb is increased such thatubu
, uau (typically due tobres.0 balancingb0,0) then the two
modes mutually enhance each other’s growth, and the rhom-
bic pattern is stable. Ifb is increased further(due to an even
larger, positivebres) such thatb.−a, then the rhombic state
bifurcates subcritically. However, with the addition of fifth
order terms(or higher) it is possible, even likely, that for the
subcritical case, the unstable mixed-mode branch turns
around at a saddle-node bifurcation and creates a branch of
stable, finite amplitude rhombic states. Thus, we do not want
to be unduly limited by the form of Eq.(9). In the initial
stages of the pattern selection process, when modes on the
critical circle are beginning to grow and compete, there will
surely be an advantage for combinations that mutually en-
hance each other’s growth. For these reasons we say that
triad interactions contributingbres.0 are enhancing and
those givingbres,0 are suppressing.

The above example is just one very basic instance of the
importance of resonant triads. In fact, triad resonances have
implications far beyond the(in)stability of rhombic patterns.
They may affect the stability of patterns within the frame-
work of any Faraday wave bifurcation problem possessing a
subspace with dynamics described by Eq.(9); see, for in-
stance,[13,16,18,20,21,23]. In these cases, the logic is the
same:bres.0 enhances patterns involving the resonant angle
ures while bres,0 suppresses them.

The triad interactions discussed in this paper have impli-
cations for one-dimensional waves as well. In this case, with
k1=k2, the resonance condition(2) becomes simply

2kc = kd, s11d

which is the familiar 1:2 spatial interaction. When the natural
frequencies of the two waves are such that a strong nonlinear
coupling is allowed(as we detail in Sec. III) we expect ad-
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ditional contributions to the cubic self-interaction coefficient
a in the SW equation

dA1

dT
= L1A1 + auA1u2A1, s12d

which is simply Eq.(9) restricted to one spatial dimension.
Since there is no spatial angleu to tune, we may arrange for
a resonant situation(11) by varying parameters in the disper-
sion relation, as in[18,23].

III. SYMMETRY CALCULATIONS

We use the approach developed in[19,20,24] to determine
how the resonant contributionbres to the cross-coupling co-
efficient bsuresd in Eq. (9) depends on the forcing function
(1). We consider a system of six traveling wave(TW) modes
(see also[18]) having the same wave vectorsk j as the three
SW modes described in Sec. II. It is advantageous to con-
sider TW first because the action of the temporal symmetries
on TW is simple while on SW it is not. In this way, we make
full use of the temporal symmetry and Hamiltonian structure
before reducing the TW equations to the desired SW equa-
tions by means of a center manifold reduction. We thus ex-

pand the fluid surface heighthsx ,td, xPR2, as

hsx,td = o
j=1

3

o
±

Zj
±stdeisk j·x±Ã jtd + c.c., s13d

whereZj
± are the slowly varying amplitudes and

Ã1 = Ã2 = m/2, Ã3 = V. s14d

Recall thatm is the dominant frequency in the forcing func-
tion (1) and V is the frequency of the damped waves, the
important values of which will be determined below. Spatial
and temporal symmetries constrain the equations for the evo-
lution of Zj

±, as we now detail.

A. Spatial symmetries

Spatial translation symmetry acts on the TW amplitudes
Zj

± as [cf. Eq. (4)]

TQ:Zj
± → Zj

±eiu j , s15d

Q = su1,u2d, u1,u2 P f0,180°d, u3 = u1 + u2.

A reflection aboutk3 acts as[cf. Eq. (5)]

k:Z1
± ↔ Z2

±, s16d

and a rotation by 180° induces[cf. Eq. (6)]

R:Zj
± → Z̄j

7. s17d

We enforce equivariance under Eqs.(15)–(17) to obtain
the form of the TW amplitude equations to quadratic order.
This truncation is sufficient to determine the leading order
resonant contributionbres to bsuresd in Eq. (9). We have

Ż1
+ = L1Z1

+ + L2Z1
− + Q1Z̄2

+Z3
+ + Q2Z̄2

+Z3
− + Q3Z̄2

−Z3
+ + Q4Z̄2

−Z3
−,

s18ad

Ż3
+ = L3Z3

+ + L4Z3
− + Q5Z1

+Z2
+ + Q6Z1

+Z2
− + Q6Z1

−Z2
+ + Q7Z1

−Z2
−,

s18bd

where the remaining four equations follow from the applica-
tion of Eqs.(16) and (17).

We now apply a standard reduction procedure to Eq.(18)
and compare this result with the SW equations(9). To facili-
tate the subsequent calculations we first introduce a phase
shift to the amplitudes:

Z1,2
± → Z1,2

± e±iw/2, s19d

where

w = w2 − w1 + 180° , s20d

with w1,2 denoting the phases of the coefficientsL1 and L2
(i.e., L1,2= uL1,2ueiw1,2). The TW equations(18) may be com-
pactly written in the form

Ż = LZ + NsZd, s21d

whereZ =sZ1
+,Z1

−,Z2
+,Z2

−,Z3
+,Z3

−dT.

FIG. 2. Three qualitatively different phase portraits correspond-
ing to Eq. (9) with a,0, L1.0. Top: b,a. Middle: a,b,−a.
Bottom: b.−a.
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The bifurcation to SW occurs whenuL2u= uL1u. As we will
see in the next section,uL2u,ufmu, so this bifurcation condi-
tion serves to define the critical amplitude of the dominant
forcing componentufmu. The critical eigenvectors arev1
=s1,1,0,0,0,0dT andv2=s0,0,1,1,0,0dT. We use a multi-
scale perturbation calculation to accomplish the reduction to
SW, writing

Z = hsA1v1 + A2v2d + h2Z2 + ¯ , s22ad

ufmu = ufmucrit + h2uf2u + ¯ , s22bd

d

dt
= h2 ]

]T2
+ ¯ , s22cd

whereh!1 is a small bookkeeping parameter andA1,2 are
the time-dependent SW amplitudes. AtOshd the linear prob-
lem is recovered. AtOsh2d Z2 is determined. AtOsh3d a
solvability condition yields equations for the slow variation
of the SW amplitudes:

Ȧ1 = L1A1 + bresuA2u2A1, s23ad

Ȧ2 = L1A2 + bresuA1u2A2. s23bd

The coefficientsa and b0 in Eq. (9) do not appear above
because the cubic order terms were omitted in Eq.(18). For
the purposes of this paper, we need only point out that the
“nonresonant” coefficientsa andb0 are bothOsgd [18,19,24]
(recall thatg is a dimensionless measure of the damping).
The resonant contribution is given by

bres=
RehL̄1Sj
RehL1j

, s24d

where

S= Q1We−iw + Q2W̄e−iw + Q3W+ Q4W̄, s25d

with

W= sL4Ū − L̄3Ud/suL3u2 − uL4u2d,

U = eiwQ5 + 2Q6 + e−iwQ7, s26d

and w defined by Eq.(20). Our analysis applies whenuL3u
. uL4u, i.e., when thek3 mode is linearly damped.

B. Temporal symmetries

Temporal symmetries constrain the coefficientsL1, . . . ,L4
andQ,, ,=1, . . . ,7, in Eq.(18). In the absence of damping
and forcing, the problem has an exact time translation sym-
metry

TDt:Zj
± → Zj

±e±iÃ jDt, s27d

with Ã j given by Eq.(14), and an exact time reversal sym-
metry

s: t → − t, Zj
± → Zj

7. s28d

In the presence of finite damping and forcing, these temporal
symmetries are broken. Nonetheless, they can be recast as

unbrokenparametersymmetries by allowing an appropriate
transformation of the forcing parametersfu and the damping
g. With this generalization the time translation symmetry
(27) becomes

TDt:Zj
± → Zj

±e±iÃ jDt, fu → fue
iuDt, s29d

and the time reversal symmetry(28) becomes

s:st,gd → − st,gd, Zj
± → Zj

7, fu → f̄ u. s30d

The damping and forcing are both assumed to be small, and
are of the same order, i.e.,ufuu,g!1. A Taylor expansion of
the coefficientsL1, . . . ,L4 andQ,, consistent with Eqs.(29)
and (30), leads to

L1 = − yrg, s31ad

L2 = − ili fm, s31bd

L3 = − %rg, s31cd

L4 = − imiF2V, s31dd

Q, = iq,F,, s31ed

where only the leading order terms have been kept. The ex-
pansion coefficients are all real, andyr ,%r .0 since they cor-
respond to damping terms. The factor offm in the expansion
of L2 reflects the fact that the critical modes respond para-
metrically to the dominant componentfm. The factorF2V in
the expansion ofL4 represents an analogous parametric forc-
ing term for the damped mode(which has frequencyV)
composed of products of thefu and f̄ u whose frequencies
sum to 2V. When 2V forcing is present in Eq.(1), then, to
lowest order,F2V= f2V; otherwiseL4=0 at Osgd.

The F, in Eq. (31e), in accordance with Eq.(29), must

contain products of thefu (and f̄ u) whose frequencies

are such that sQ1,Q̄5deisV−mdt, sQ2,Q7de−ism+Vdt, and

sQ3,Q̄4,Q̄6deiVt are time-translation-invariant quantities.
Since we are interested in understanding when the effect of
resonant triads is significant, we focus on those cases where
bres is Osgd or larger; this requires that one or more of the
quadratic coefficientsQ, is Osgd or larger. A straightforward
calculation shows that this scaling can occur only ifV
P hm,2m,n,m±m,n−mj, V.0, for some frequencyn, and
we henceforth restrict attention to these cases. Note that,
since there are many frequencies infstd, these sets of rel-
evantV values can overlap. For instance, an “m−n mode” is
also a “p−m mode” if n+p=2m, n,m. An important(and
somewhat surprising) result of our symmetry calculation is
that the contributionbres arising from a given damped mode
with frequencyV involves(at leading order) a maximum of
five frequencies: the dominant frequencym, up to three other
frequencies appearing atOsgd in the three sets of coupling

coefficientssQ1,Q̄5d, sQ2,Q7d, and sQ3,Q̄4,Q̄6d, and poten-
tially one more frequency, 2V, that parametrically forces the
damped mode atOsgd, thus makingL4 nonzero at leading
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order. The effect on the triad interaction of any additional
forcing components in Eq.(1) will be Osg2d or smaller.

C. Results

We combine the results of Secs. III A and III B to obtain
leading order expressions forbres in Eq. (9) with explicit
dependence on the dampingg, the forcing amplitudesufuu,
and the forcing phasesfu. For eachV there are a finite
number of qualitatively distinct cases to consider. These are
distinguished by the number of relevant frequencies involved
(up to five) and the manner in which they enter the problem
(through L4 and theQ,). Having chosen one of these, we
substitute the corresponding expressions forQ,, and the ex-
pansions for the remaining TW coefficients shown in Eq.
(31), into Eq. (24) for bres. The results are summarized in
Table I, and will be discussed in the next section.

To make this table of results manageable, we make use of
the following definitions:

a1 = q1q5, s32ad

a2 = q2q7, s32bd

a3 = 2q6sq3 − q4d, s32cd

a4 = q1q7 − q2q5, s32dd

a5 = h2q1q6 + q5sq3 − q4djli/uliu, s32ed

a6 = h2q2q6 − q7sq3 − q4djli/uliu, s32fd

and

P2VsFd =
uL3u + miuf2VusinF

uL3u2 − umi f2Vu2
, s33ad

R2VsF1,F2d =
uL3usinF1 + miuf2VucosF2

uL3u2 − umi f2Vu2
. s33bd

In the above, theqj and li are defined by Eq.(31). The
relevant phasesF ,F1,F2 appear in Table I.

D. Hamiltonian structure

We now discuss the implications of Hamiltonian structure
in the undamped problem(see[21,26–31]). This is a stronger
assumption than that of time reversal symmetry(29) alone.
We suppose, as in[19,20,24], that the undamped TW equa-
tions(18) can be derived from a HamiltonianH. Because the

amplitudesZj
± and Z̄j

± need not themselves be canonically
conjugate Hamiltonian variables, we write Hamilton’s equa-
tions in the generalized form

Żj
± = 7

i

r j
2

]H
]Z̄j

±
, r1 = r2, r j P R. s34d

This takes account of scaling transformations likeZj
±→ r jZj

±

that preserve the Hamiltonian character of the dynamics, and

are needed to relate the underlying canonical variables toZj
±

and Z̄j
± in Eq. (18). For inviscid Faraday waves the surface

heighth and the surface velocity potential are the underlying
canonical variables(see, e.g.,[26,28]). Using this fact we
find that, to leading order,r1

2=r2
2=m/ s2kcd and r3

2=V /kd are
appropriate prefactors in Eq.(34) (see[32] where a similar
factor arises in the corresponding canonical transformation).

Requiring thatH be a real-valued function, invariant un-
der the symmetries(15)–(17), (29), and(30), we find that the
equations of motion(34) are equivalent to Eqs.(18) only if
q1=rq5, q2=rq7, andq3=q4=rq6 with r =r3

2/ r1
2. These condi-

tions imply, for the results in Table I, that

a1 . 0, a2 . 0, a3 = 0, a4 = 0. s35d

IV. DISCUSSION

We now discuss Table I in some detail, highlighting the
most important features of the results collected there. We
then investigate the range of validity of these results, which
were derived under the assumption of weak dampingg. To
do this, we introduce the Zhang-Viñals Faraday wave equa-
tions and use them to perform explicit numerical calculations
that demonstrate the range ofg for which the symmetry-
based results provide an accurate prediction.

A. Highlights of results

Some general comments on the organization of Table I are
in order. Note first that there are many cases which do not
need to be listed because they can be obtained simply by
relabeling the different frequencies. For example, the case
sm,n,p,q, · ;Vd=sm,n,2m+n,m+n, · ;m+nd is equivalent
to the case (fourth up from the bottom in Table I)
sm,n,p,q, · ;Vd=sm,n,m+n,n−m, · ;nd with n↔q.

There are six groupings in the table. The first shows the
five important damped modes and their contribution tobres
when there is only one type of coupling atOsgd or lower and
no parametric forcingf2V. In these cases there is no(leading
order) dependence on the forcing phasesfu. In the second
section the same damped modes have been parametrically
forced. The factor 1/uL3u is then replaced byP2VsFd of Eq.
(33a). This is a strictly positive oscillatory function
(uL3u. umi f2Vu for damped modes) with extrema atF= ±90°.
The third and fourth sections are analogous to the first and
second, but with two types of coupling rather than one—
similarly for the fifth and sixth sections, but with all three
possible quadratic couplings(i.e., all Q, are linear in thefu).

Two of the damped modes appearing in the table warrant
special mention. TheV=m mode stands out because its in-
fluence is especially strong. For this mode, the largest qua-
dratic terms in Eq.(18) areOs1d, and the resulting contribu-
tion bres is Osg−1d. In contrast, for all of the other damped
modes, the strongest quadratic couplings take place atOsgd
and lead tobres of Osgd; theseOsgd contributions are of the
same order asa andb0 in Eq. (9), but can still have signifi-
cant effects on pattern seelction, as demonstrated in Sec. V.

The second special case is theV=2m mode. Although
this mode satisfies all the necessary temporal constraints to
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TABLE I. Leading resonant contributionbres to b in Eq. (9) for the most important damped modes. For a damped mode with frequency
V, there are at most five forcing frequenciesm,n,p,q,r which affect bres. Here, m,n,p,q,r ,V.0 and xPZ+. Each expression for
sm,n,p,q,rd, given V, is excluded from those of entries further down the table, in which additional relationships hold. Dots indicate an
arbitrary commensurate frequency, if present, which does not affectbres at lowest order. Entries whose listed frequencies have a common
factor other than unity(e.g., those withx,xÞ1) are assumed to be part of a forcing function with other, relatively prime, frequencies. For
! the 6 follows sgnsm−nd. See Eqs.(32) and (33) for definitions ofa1, . . . ,a6, P2V, andR2V used below. Certain entries are reproduced
from [20]; the cases that involve more than three forcing frequencies are new.

sm,n,p,q,rd V Leading resonant contributionbres Relevant phase(s)

sm, · , · , · , ·d m −a1/ uL3u
sm, · , · , · , ·d 2m −a1ufmu2/ uL3u
sm,n, · , · , ·d n −a3ufnu2/ uL3u
sm,n, · , · , ·d m±n −a1ufnu2/ uL3u
sm,n, · , · , ·d n−m a2ufnu2/ uL3u

sm,2m, · , · , ·d m −a1PnsFd F=fn−2fm

s3x,2x, · , · , ·d x −a1ufnu2PnsFd F=3fn−2fm

sm,4m, · , · , ·d 2m −a1ufmu2PnsFd F=fn−4fm

sm,n,2n, · , ·d n −a3ufnu2PpsFd F=2fn−fp

sm,n,2m±2n, · , ·d m±n −a1ufnu2PpsFd F=fp−2fm72fn

sm,n,2n−2m, · , ·d n−m a2ufnu2PpsFd F=fp+2fm−2fn

sm,2m, · , · , ·d 2m s−a1ufmu2−a3ufnu2+a5ufmi fnusinFd / uL3u F=fn−2fm

sm,3m, · , · , ·d 2m s−a1ufmu2+a2ufnu2+a4ufmi fnucosFd / uL3u F=fn−3fm

sm,n, um−nu , · , ·d n s−a1ufpu2−a3ufnu2+a5ufni fpusinFd / uL3u F=fn−fm±fp!

sm,n,m+n, · , ·d n sa2ufpu2−a3ufnu2+a6ufni fpusinFd / uL3u F=fm+fn−fp

sm,n,2m±n, · , ·d m±n sa2ufpu2−a1ufnu2+a4ufni fpucosFd / uL3u F=2fm−fp±fn

s3x,x,2x, · , ·d x −a1ufpu2PpsF1−F2d−a3ufnu2PpsF1+F2d F1=fn−fm+fp

+a5ufni fpuRpsF1,F2d F2=fm+fn−2fp

s3x,2x,4x, · , ·d x −a1ufnu2PnsF1+F2d+a2ufpu2PnsF2−F1d F1=fn+fp−2fm

+a4ufni fpuRnsF1−90° ,F2+90°d F2=2fn−fp

sm,2m,4m, · , ·d 2m −a1ufmu2PpsF1−F2d−a3ufnu2PpsF1+F2d F1=fn−2fm

+a5ufmi fnuRpsF1,F2d F2=fn+2fm−fp

sm,3m,4m, · , ·d 2m −a1ufmu2PpsF1−F2d+a2ufnu2PpsF1+F2+180°d F1=fn−3fm

+a4ufmi fnuRpsF1+90° ,F2+90°d F2=fm+fn−fp

sm,n, um−nu ,2n, ·d n −a1ufpu2Pqs2F1−F2d−a3ufnu2PqsF2d F1=fn−fm±fp!

+a5ufni fpuRqsF1,F2−F1d F2=2fn−fq

sm,n,m+n,2n, ·d n a2ufpu2Pqs2F1−F2d−a3ufnu2PqsF2d F1=fm+fn−fp

+a6ufni fpuRqsF1,F1−F2d F2=2fn−fq

sm,n,2m±n,2m±2n, ·d m±n −a1ufnu2PqsF2−2F1d+a2ufpu2PqsF2d F1=2fm±fn−fp

+a4ufni fpuRqsF1+90° ,F2−F1−90°d F2=2fm−2fp+fq

sm,2m,3m, · , ·d 2m hsa2ufpu2−a1ufmu2−a3ufnu2+a4ufmi fpucosF1dj F1=fp−3fm

+ha5ufmi fnusinF2+a6ufni fpusinsF2−F1dj / uL3u F2=fn−2fm

sm,n,m+n, um−nu , ·d n hsa2ufpu2−a1ufqu2−a3ufnu2+a4ufpi fqucosF1dj F1=fp−2fm±fq!

+ha5ufni fqusinsF1+F2d+a6ufni fpusinF2j / uL3u F2=fm+fn−fp

s3x,x,4x,2x, ·d x −a1ufqu2PqsF2−F1d+a2ufpu2PqsF1+F2d F1=2fm−fp−fq

−a3ufnu2Pqs2F3−F1−F2d+a4ufpi fquRqsF1+90° ,F2−90°d F2=2fq−fp

+a5ufni fquRqsF3−F1,F3−F2d+a6ufni fpuRqsF3,F1+F2−F3d F3=fm+fn−fp

sm,2m,3m,4m, ·d 2m −a1ufmu2Pqs−F1−F2d+a2ufpu2PqsF2−F1d F1=fm+fp−fq

−a3ufnu2Pqs2F3−F1−F2d+a4ufmi fpuRqsF2+90° ,F1+90°d F2=3fm+fp

+a5ufmi fnuRqsF3−F1−F2,F3d+a6ufni fpuRqsF3−F1,F3−F2d F3=2fm+fn−fq

sm,n,m+n, um−nu ,2nd n −a1ufqu2PrsF2−F1d+a2ufpu2PrsF1+F2d F1=2fm−fp7fq!

−a3ufnu2Prs2F3−F1−F2d+a4ufpi fquRrsF1+90° ,F2−90°d F2=fr −fp±fq!

+a5ufnfquRrsF3−F1,F2−F3d+a6ufni fpuRrsF3,F2+F3−F1d F3=fm+fn−fp
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make a significant contributionbres, it cannot enter into reso-
nant triad interactions with the critical modes because its
wave number is too large, i.e.,kd.2kc, and Eq.(2) cannot be
satisfied; one can estimate the relevant wave numbers from
the inviscid fluid dispersion relation(see [18] and Sec.
IV B ). However, this mode may have relevance for other
systems such as ferrofluids in a magnetic field where the
dispersion relation is nonmonotonic[33], and hence we have
kept it in the table.

A key result of Table I is the important role played by the
relative phasesfu in the forcing function(1). For all but the
most simple cases(in the first section of the table), bres de-
pends on combinations of the forcing phases which are in-
variant under the time translation symmetryTt of Eq. (29);
one phase is always arbitrary, associated with the choice of
origin in time, while any physically meaningful phase must
be invariant under Eq.(29). This phase dependence provides
a very convenient way to tune the strength of the nonlinear
interactions, as the numerical examples of Sec. V will dem-
onstrate.

Another important aspect of Table I pertains to the sign of
bres. Recall from the discussion of Sec. II that ifbres.0
interactions involving critical modes separated by the angle
ures will be enhanced, whereas ifbres,0 they will be sup-
pressed. Relations(35) mean that for simple couplings(the
first two sections of Table I) the sign ofbres is determined,
and thus one knows which effect(if any) to expect. In par-
ticular, theV=m, V=2m, andV=m±n modes are suppress-
ing while theV=n mode is inconsequential. TheV=n−m
mode, in contrast, is enhancing, and thus is of great interest
because it may be used directly as a selection mechanism.
The effect of this difference frequency mode on pattern se-
lection was examined in[18], and indeed, it is likely respon-
sible for stabilizing the superlattice pattern observed in[7].
We examine the difference frequency mode further in Sec. V.

A final noteworthy feature of Table I concerns the effect
of parametrically forcing the damped mode with a frequency
2V. A comparison of the factors 1/uL3u, P2VsFd, and
R2VsF1,F2d reveals the potential for a small denominator in
the latter two cases. The parametric forcing can increaseubresu
and amplify the effect of the damped mode provided this
denominator does not become excessively small, which
would indicate that the damped mode is nearly critical and
that the reduction leading to Eq.(23) is breaking down. This
feature will be exploited as well in some of the examples of
Sec. V.

B. Zhang-Viñals hydrodynamic equations

In this subsection, we investigate the range of dampingg
for which our symmetry-based results are valid. To carry out
this investigation we perform explicit numerical calcula-
tions using the Zhang-Viñals hydrodynamic equations
(introduced below). In particular, we use the method des-
cribed in [16] to calculate the cross-coupling coefficientb
in Eq. (9) as a function ofu, the angle betweenk1 and
k2 in Fig. 1. It is sufficient to takeuP f0° ,90°d since
bsud=bs180°−ud=bs180° +ud.

The Zhang-Viñals equations[21] describe the dynamics
of small amplitude Faraday waves on a deep, nearly inviscid

fluid layer. We use the same scaling of the equations as in
[23], writing them in the form

s]t − g=2dh − D̂F = Fsh,Fd, s36ad

s]t − g=2dF − fG0=2 − Gstdgh = Gsh,Fd, s36bd

whereGstd=G0− fstd and the nonlinear terms are given by

Fsh,Fd = − = · sh = Fd +
1

2
=2sh2D̂Fd − D̂shD̂Fd

+ D̂HhD̂shD̂Fd +
1

2
h2=2FJ , s37ad

Gsh,Fd =
1

2
sD̂Fd2 −

1

2
s=Fd2 − sD̂Fdhh=2F + D̂shD̂Fdj

−
1

2
G0 = · hs=hds=hd2j. s37bd

Herehsx ,td is the fluid surface height,Fsx ,td is the surface
velocity potential, andx is the two-dimensional spatial coor-

dinate. The operatorD̂ multiplies each Fourier component of

a field by its wave number, i.e.,D̂eik·x= uk ueik·x.
The equations depend on three dimensionless fluid param-

eters: the damping parameterg, the gravity numberG0, and
the capillarity numberG0. These fluid parameters, and the
dimensionless forcing amplitudesfu in Eq. (1) are related to
the physical parameters by

g ;
2nk̃2

v
, G0 ;

g0k̃

v2 , G0 ;
sk̃3

rv2, fu ;
guk̃

v2 . s38d

Heren is the kinematic viscosity,s is the surface tension,r
is the density, andv and thegu are the Fourier amplitudes in
the original(dimensioned) forcing function

gstd = o
uPZ+

gue
iuvt + c.c., gu P C. s39d

Additionally, k̃ is defined by the inviscid gravity-capillary
wave dispersion relation

g0k̃ +
sk̃3

r
= Smv

2
D2

, s40d

and g0 is the usual gravitational acceleration. Note thatG0
and G0 are not independent parameters since Eqs.(38) and
(40) imply that

G0 + G0 =
m2

4
. s41d

The dimensionless dispersion relation[cf. Eq. (40)] also
gives the natural frequencyVskd of undamped, unforced
waves as a function of their wave numberk:

V2 = G0k + G0k
3. s42d

For small dampingg, Eq. (42) provides an excellent esti-
mate of the wave number associated with a given frequency,
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even for forced waves; we make use of this fact in Sec. V.
Since the critical modes oscillate with dominant frequency
m/2, we havekc<ksm/2d=1, whereksVd is the inverse of
the dispersion relation from Eq.(42). One may then choose a
damped mode with frequencyV, find ksVd, and then apply
Eq. (3) to estimateures.

C. Validity of symmetry-based results

To investigate the applicability of our results for finite
values ofg, we focus on an example using three-frequency
sm,n,pd=s8,7,2d forcing and quantify the effect of theV
=8−7=1damped mode; this corresponds to the penultimate
entry in the second section of Table I. Although this mode
does not necessarily lead to the most significant resonance,
we study it as an instructive example to address general
questions about the validity of our symmetry results.
Damped modes which play a more important role are exam-
ined in the applications in Sec. V.

From the Hamiltonian considerations in Sec. III we have
a1.0, and thusbres,0. We setG0=16 in Eq.(36), fix the
ratios of the forcing amplitudes atufnu / ufmu=0.4, ufpu / ufmu
=0.08, and compute the coupling coefficientbsud using the
method described in[16]. As predicted on the grounds of
symmetry arguments, there is a dip in the plot ofbsud around
the angleures<23° where theV=1 mode is in spatial reso-
nance. An example is shown in Fig. 3 forg=0.1 with F
(which appears in the fourth column of Table I) set to 0.

In the discussion that follows, we study various properties
of bres as the damping parameterg is varied. In this discus-
sion, it is important to realize that the results will depend on
the chosen value ofm, on whichg in Eq. (38) depends indi-
rectly through Eq.(40). When generalizing the results shown
below to other forcing functions it is, in fact, better to look at
the quantityg /m [cf. Eq. (38)]. This alternative nondimen-
sional measure of the damping utilizes the critical wave
number and the dominant frequency(mv, as opposed tov)
and is therefore better suited for quantitative comparison
across forcing functions with very differentm values. We
have used the scaling(38), which utilizes thecommonfre-
quency, to be consistent with previous work[18,20,23,24].

We first consider the scaling ofubresu as g is varied with
F=0. It follows from the result in Table I that

bres~ ufnu2
uL3u

uL3u2 − umi f pu2
. s43d

Furthermore, recall from Eq.(31) that uL1,3u~g and uL2u
~ fm. Since, at the onset of SW,uL1u= uL2u (see Sec. III), we
have ufmu~g. Sinceufmu, ufnu, and ufpu are held in a constant
ratio, we also haveufnu, ufpu~g. Thus Eq.(43) becomes sim-
ply bres~g. This scaling is confirmed by the numerical re-
sults of Fig. 4. Here, we holdF=0 and computeubresu as a
function of g. We calculate the resonant contribution as

ubresu= ubsuresd− b̂suresdu, where b̂suresd is the cross-coupling
coefficient evaluated at the same angle as for the case of
three-frequency forcing, but withufnu and ufpu set to 0. The
numerical data are shown as points. For comparison, a line
of slope 1 is drawn through the first data point, confirming

the proportionality tog. The theoretically predicted scaling
holds reasonably well up tog,Os10−1d, and the numerical
result does not strongly diverge from the prediction untilg
<0.5.

Next, we examine the scaling of the half-widthC of the
dip at u=ures. For uÞures, the natural frequency ofkd will
differ from the resonant frequency(m, 2m, n, etc.). At lead-
ing order, thisdetuningappears in the coefficientL3 as an
imaginary part, i.e.,L3=−%rg+ i%i [cf. Eq. (31c)]. If the de-
tuning is small, the linear approximations%i ~kd−kres~u
−ures can be used(herekres is the wave number associated
with the resonant frequency) and so%i <csu−uresd for some
real constantc, i.e.,

L3 < − %rg + icsu − uresd. s44d

Substituting this expression into the result from Table I
shows thatC~g. Numerical results are displayed as points
on the log-log plot in Fig. 5. For comparison, we plot a line

FIG. 3. Coupling coefficientbsud in Eq. (9) computed from Eq.
(36) using three-frequencysm,n,pd=s8,7,2d forcing, g=0.1, G0

=16, ufnu / ufmu=0.4, ufpu / ufmu=0.08, fm=fn=fp=0. The angleu is
given in degrees.

FIG. 4. Resonant contributionbres as a function of the damping
parameterg. The dots correspond to a numerical computation using
Eq. (36). The straight line of slope 1 confirms thebres~g scaling
predicted by symmetry arguments. The capillarity and forcing pa-
rameters used are the same as those in Fig. 3.
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of slope 1 fitted through the first data point. As with the dip
magnitudeubresu, the theoretical prediction remains reason-
able up tog,Os10−1d.

Finally, we consider the dependence ofbsuresd on F=f2

−2f8+2f7, and examine how thisF dependence changes
with increasingg. From Table I, we expect that the depen-
dence is sinusoidal and, from the fact thatmi .0 [24] for Eq.
(36), we anticipatebsuresd reaching a maximum(i.e., having
the shallowest dip) near F=Fmax=−90° and reaching a
minimum (i.e., having the deepest dip) nearF=Fmin=90°.
Figure 6 shows how the numerically calculated values(dots)
of Fmin and Fmax differ from the theoretical predictions
(lines) asg is increased. To elucidate the departure from the
theoretical prediction, we show three profiles corresponding
to three different values ofg in Fig. 7. In Fig. 7(a), g
=0.04 and the profile, as predicted, appears sinusoidal, with
the locations of the minimum and maximum values in good
agreement with the theoretical prediction ofF= ±90°. In
Fig. 7(b), g=0.2 and, although the profile is still sinusoidal,
it is shifted by approximately 45° with respect to the theo-
retical prediction. In Fig. 7(c), g=1, and the profile no longer
resembles a sine function. This is demonstrated further by
the plot in Fig. 7(d), which shows the Fourier transform of
the data in Fig. 7(c). The zero component(i.e., the
F-independent part) has been removed, and the remaining
data have been normalized so that the strongest component
has magnitude 1. The data indicate that higher harmonics of
F are now important. Note that the phase shift of the maxi-
mum and minimum, relative to their predicted values, ap-
pears well before the higher harmonics come into play[see
Fig. 7(b)], a fact that can be understood as follows. TheF
dependence in Table I originates with the phase of terms in
the normal form reduction, and depends on products of the
coefficients in Eq.(31). If the next order terms in the expan-
sions describing these coefficients are kept, a phase shift of
Osgd is obtained. In contrast, higher harmonics ofF are
generally associated with higher order(as opposed to next
order) terms in the expansions(31). This is a result of time-

translation symmetry, which requires that terms involving
additional powers of the forcing amplitudesfu only appear in
certain combinations. The specific order ing at which these
new terms become relevant depends in nontrivial fashion on
the particular choice of forcing frequencies.

In this section we have explored the validity of our sym-
metry results with respect to the smallg assumption under
which they were derived. For smallg, the symmetry results
are in excellent agreement with the numerical ones. For
largerg, the scalings predicted by symmetry are not correct.
However, many of the importantqualitativefeatures are pre-
served. In particular, even at largerg, increasingg increases
ubresu. Furthermore, even though the dependence ofbres on F
is no longer sinusoidal, there are still special phasesFmin and
Fmax which minimize and maximizebres, suggesting that
even in experiments with large damping, tuning the forcing
phases may be an effective means by which to control reso-
nant triad interactions important to pattern formation.

V. APPLICATIONS

The results in Table 1 may be used to understand—and
control—certain phenomena in Faraday systems. For each of
the following examples, we apply our symmetry-based meth-
ods and demonstrate the results via numerical calculations
using Eq.(36).

A. 1:2 temporal resonance and impulsively forced Faraday
waves

We focus on the cases for whichV=m in Table I, so that
the critical modes and the damped mode are in a 1:2 tempo-
ral resonance. From the Hamiltonian considerations in Sec.
III, a1.0 and thusbres,0. Also, recall from Sec. IV that for
this case, the modes are coupled atOs1d. Therefore, the con-
tribution bres is Osg−1d, which is larger than for the other
cases, wherebres is only Osgd. In short, theV=m mode has

FIG. 5. Half-widthC of the resonant “dip” as a function of the
dampingg. The dots correspond to a numerical computation using
Eq. (36). The straight line of slope 1 confirms the predictedC~g
scaling. The capillarity and forcing parameters used are the same as
those in Fig. 3.

FIG. 6. The values ofF at whichbsuresd takes on its minimum
and maximum values as a function of the dampingg. The dots
correspond to numerical data, while the lines at 90° and −90° show
the predicted minimum and maximum respectively. The capillarity
number and forcing amplitudes used are the same as those in Fig. 3.
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a very strong influence onbsud. The implications of this
well-known resonance for Faraday waves have been investi-
gated in a number of studies, including[21].

When f2m forcing is present, the size ofbres depends on
the phaseF=f2m−2fm; see the first entry in the second
section of Table I. This phase dependence has previously
been calculated in[13] by means of a perturbation expansion
on the Zhang-Viñals model(36). Our work confirms the
phase dependence in a model-independent manner, i.e., by
means of symmetry considerations. The phase dependence
gives us a convenient and powerful means by which to con-
trol the 1:2 resonance and influence the shape ofbsud. In
particular, usingF=90° maximizes the effect of the reso-
nance, whileF=−90° minimizes it.

In Fig. 8 we show a numerical example forsm,nd
=s1,2d forcing. The parameters in Eq.(36) areg=0.008 and
G0=0.125. The forcing amplitude ratio isufnu / ufmu=0.396,

which is far from the codimension-2 pointufnu / ufmu=3.53 at
which waves with dominant frequencyn/2 set in. TheV
=m mode has wave numberksmd<1.83, and thusures

<47.1°. Consistent with Table I, a dip inbsud is found at this
angle. As predicted, by choosingF=90°, we achieve the
largest dip atures and thus a strong suppression of patterns
involving angles near this one. On the other hand, usingF
near −90° actually reduces the effect of the triad interaction
by a factor 1/2, uL3u / suL3u+ um̃i f2Vud,1 relative to the
single-frequency case, so the suppression is much weaker.

As discussed in Sec. II, the spatiotemporal resonances we
consider in this paper may also affect the self-interaction
coefficient a in the one-dimensional analog of Eq.(9),
namely, Eq.(12). In the case of the 1:2 temporal resonance,
the conditionVskdd=2Vskcd must be satisfied along with Eq.
(11). There will then be a contribution to the self-interaction
coefficienta in Eq. (12) whose dependence on the forcing

FIG. 7. (a)–(c) Dependence of
bsuresd on the phaseF (F given in
degrees). (a) With damping g
=0.04. As predicted by the sym-
metry arguments in Sec. III, the
phase dependence is sinusoidal
with minimum and maximum near
±90°. (b) g=0.2. The phase de-
pendence is sinusoidal, but there
is a phase shift of approximately
45°. (c) g=1. The dependence is
no longer sinusoidal.(d) Fourier
transform of the data in(c). The
zero component has been removed
and the remaining data have been
normalized so that the strongest
component has magnitude 1. The
dependence on higher harmonics,
e.g., 2F, 3F, 4F is apparent. For
all plots, the capillarity number
and forcing amplitudes used are
the same as those in Fig. 3.

FIG. 8. Effect of relative forcing phase on the first harmonic resonance, i.e., resonance with theV=m mode, forsm,nd=s1,2d forcing.
The relevant phaseF is given in Table I.(a) Cross-coupling coefficientbsud with F=90° andF=−90°; the single frequency case(dashed
line) is shown for reference.(b) Dip magnitudebsuresd versusF. For these calculations, the parameters in Eq.(36) are g=0.008 andG0

=0.125, and the forcing amplitude ratio isufnu / ufmu=0.396. Bothu andF are given in degrees.
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and damping parameters is precisely that given in Table I. In
practice, one may vary the frequencyV by tuning the capil-
larity number G0 which appears in the dispersion relation
(42). In an experiment, this might be achieved by varying the
base forcing frequencyv [see Eq.(38)].

The results of Table I for the 1:2 spatiotemporal resonance
and its effects on the self-interaction coefficienta may be
used to understand certain features of impulsively forced
Faraday waves, i.e., waves forced by a periodic sequence of
impulses rather than a smooth forcing function of the form of
Eq. (1). Impulsive forcing was studied first in[34] and sub-
sequently in[22].

In [22] the forcing function takes the form

fstd = fdo
n=0

`

dst − 2pnd − dst − 2pn − ad, s45d

representing an alternating sequence ofd functions of
strength fd. The sequence has a temporal asymmetry con-
trolled by the parameteraP s0,2pd, which determines the
amount of time between a positive pulse and the subsequent
negative pulse. A depiction of Eq.(45) is shown in Fig. 9. In
[22], asG0d is calculated from Eq.(36), and a large dip at
G0=Gres is observed, whereGres is the parameter value for
which the 1:2 spatiotemporal resonance is satisfied. Forg
sufficiently small, it is noted that this dip becomes more
negative(i.e., the correspondingaresbecomes more negative)
as the asymmetry parametera is varied across the interval
s0,2pd. This observation is consistent with the results in
Table I, as we now explain.

From Table I, there are at most two forcing frequencies
which affect the V=m damped mode at leading order,
namely,m and 2m. We therefore consider a drastic truncation
of the Fourier series for the forcing function(45), keeping
the first two terms, which are the only terms affecting the
resonance at leading order:

fstd = f1e
it + f2e

2it + c.c., s46d

where

f1 =
fd

2p
s1 − e−iad, f2 =

fd

2p
s1 − e−2iad. s47d

For Eq. (36) with weak damping and forcing, and for the
two-frequency truncation(46), the Faraday instability occurs
when uf1u=g (this follows directly from the results in[18]).
By setting fd equal to its critical value and making a trans-
lation in time, we can write the forcing function at onset as

fcritstd = geit + F2e
2it + c.c., s48d

where

F2 = − 2ig cosSa

2
D . s49d

The first entry in the second section of Table I indicates that
the 1:2 spatiotemporal resonance produces a negative contri-
bution ares to the self-interaction coefficient given by
−a1P2sFd whereF=argsF2d. Using the expression(49) and
simplifying reveals that

ares= −
a1

uL3u + 2mig cossa/2d
, s50d

which decreases asa is increased across the intervals0,2pd,
assumingmi>0 (see[24]). This is consistent with the obser-
vation in [22], which successfully fits numerical results to
this functional form, at least for smallg. From Eq.(12) we
see that the periodic striped state has a steady state amplitude
of uA1u2=−l /a. Thus, experimentally, the wave height may
be controlled by varyinga. Largera causes smallera and,
consequently, larger amplitude waves.

B. Stabilization of superlattice patterns with multifrequency
forcing

We now generalize the simple one-dimensional example
just presented. Our symmetry-based results suggest a meth-
odology for “engineering” specific two-dimensional patterns
through a judicious choice of forcing function. The idea is to
exploit the results in Table I in constructing a multifrequency
forcing function such that enhancing(and/or suppressing)
resonances occur at carefully chosen angles. We will apply
this methodology to demonstrate how a superlattice pattern
of the SL-I type observed in[7] may be stabilized. Stabili-
zation of this superlattice patterns can be related to the
dampedV=n−m “difference frequency” mode in Table I. A
demonstration is provided in[16], and further explorations
are performed in[18,20]. The method we outline below,
however, results in a dramatically more pronounced stabili-
zation than was obtained in previous work. In particular, it
can lead to stable superlattice patterns at onset of the primary
instability of the flat fluid surface.

Step 1. Use geometry to determine the angles for the de-
sired enhancing (or suppressing) effects. For the SL-I pat-
tern, the 12 dominant waves have wave vectors that lie at the
vertices of two hexagons, one rotated by an angleuh,30°
with respect to the other; see Fig. 10. Only a discrete(but
countably infinite) set ofuh lead to periodic patterns, and so
we restrict attention to these values; see[15] for details. The
stability of the SL-I patterns may be studied within the
framework of a 12-dimensional bifurcation problem which
describes their competition with stripes, rhombic patterns,
and hexagons. This approach is developed in[15,35,36] (the
full bifurcation equations may be found in[36]). A key result
is that the stability of the superlattice pattern associated with
uh depends on coefficients in the bifurcation equations which
we call sb4,b5,b6d, where

FIG. 9. Schematic representation of the asymmetricd-function
forcing specified by Eq.(45).
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b4 = bsuhd/uau, s51ad

b5 = bs60° −uhd/uau, s51bd

b6 = bs60° +uhd/uau, s51cd

with a and bsud appearing in Eq.(9). In particular, the su-
perlattice pattern is favored over hexagons when
sub4u , ub5u , ub6ud are all sufficiently small. Sincebsud may be
made small in magnitude with “enhancing” resonances that
cause spikes inbsud, geometry dictates that we should ar-
range for such resonances to occur at one or more of the
anglesuh, 60°−uh, 60° +uh. For a more detailed discussion,
see[16].

Step 2. Use the dispersion relation and appropriate reso-
nance conditions from TableI to find a good set of forcing
frequencies which satisfy the geometrical constraints from
step 1. For our SL-I example, since we want to construct
enhancing resonances, we turn our attention to theV=n
−m “difference frequency” mode. We begin with three-
frequency sm,n,pd forcing, aiming to make two of
sub4u , ub5u , ub6ud small using the two difference frequency
modesV=n−m and V=p−m. We choose to stabilize a su-
perlattice pattern havinguh.20.3°. (This is one of the ad-
missible values ofuh. The corresponding pattern is a differ-
ent SL-I pattern from that observed in[7], but it is in the
same family of patterns; see[15,36].) The two wave numbers
corresponding to the difference frequency modes satisfy the
resonance conditions

V2skn−md = sn − md2, s52ad

V2skp−md = sp − md2. s52bd

With the optimal wave numbers for these damped modes
dictated by geometry, the aim is to find a set of forcing
frequenciessm,n,pd such thatkn−m andkp−m of Eq. (52) are

as close to the optimal wave numbers as possible. In practice
we also varyG0 so as to arrange for frequenciessm,n,pd that
are not too large—this is not strictly necessary but it eases
our numerical computations to use smaller sets of integers.
In this case we obtain reasonable agreement by using
sm,n,pd=s8,10,11d and G0=5.26. The wave numbers pre-
dicted by Eq.(52) are skn−m,kp−md.s0.351,0.682d and the
corresponding resonance angles of Eq.(3) are sun−m,up−md
.s159.8° ,140.1°d. These will cause spikes inbsud at ap-
proximately 20.2° and 39.9°, respectively. Note that the
former angle is close to our chosenuh, and the latter angle is
close to 60°−uh [cf. Eq. (51b)].

We compute the coupling coefficient from Eq.(36) with
damping g=0.1, forcing amplitude ratiosufnu / ufmu=1.54,
ufpu / ufmu=1.85, and forcing phases sfm,fn,fpd
=s0° ,0° ,0°d. The forcing ratios were chosen to makebres,
proportional to ufnu2 for ures=20.2° and to ufpu2 for ures
=39.9°, as large as possible, while at the same time avoiding
the critical values(i.e., the modes oscillating atn/2 andp/2
remain damped). The coefficientssb4,b5,b6d can be ex-
tracted from Fig. 11(a), where we plotbsud / uau as a dotted
line. As expected, there are two bumps due to the two differ-
ence frequency resonances, though they are quite small(the
large dip aroundu=0° is due to resonance with theV=m
mode). In fact, though the observed resonances at 20.2° and
39.9° are in excellent agreement with the prediction, the ef-
fect is far too weak to stabilize a pattern at the chosen angle,
and so more work must be done.

Step 3. Use the results in TableI to further enhance/
suppress the nonlinear interactions. In this case we add the
forcing componentssq,rd=s4,6d in order to parametrically
force the dampedV=2 and V=3 difference frequency
modes and obtain largerubresu. In order to favor our chosen
SL-I pattern, we chooseufnu / ufmu and ufpu / ufmu as before, and
take ufqu / ufmu=0.184 anduf ru / ufmu=0.505. These ratios are
close to(but below) their critical values whenufmu= ufmucrit.
We have chosen the phases to besfm,fn,fp,fq,frd
=s0° ,0° ,0° ,−7° ,−10°d. Though the arguments of Sec. II
suggest that we should makebres as large and positive as
possible to favor the pattern, we are working with a cubic
truncation of the bifurcation equations and so we actually
wantbressuch thatubu is very small(as previously stated). We
might have adjusted the forcing amplitude ratios to achieve
this situation, but instead, we find it more convenient to vary
the forcing phases away from the optimal values predicted
by Table I.

The coupling coefficient appears as the solid line in Fig.
11(b). It nearly duplicates the result from the three-frequency
case(which is included as a dotted line for comparison) but
the two small bumps have become large spikes. We find that
at u=20.3°,sb4,b5,b6d=s−0.02230,−0.01887,−0.04045d. To
study the stability of the superlattice states, we perform a
bifurcation analysis using the overall forcing strengthf tot
;Îufmu2+ ufnu2+ ufpu2+ ufqu2+ uf ru2 as the bifurcation parameter.
(Similar studies were carried out in[16], which reprises the
full form of the bifurcation equations and expressions for the
signs of the eigenvalues of various patterns, and also gives
some typical examples of bifurcation scenarios.) A branch of
superlattice patterns withuh.20.3° bifurcates transcritically

FIG. 10. Schematic of the Fourier wave vectors corresponding
to the 12 dominant waves which comprise an SL-I superlattice pat-
tern. The vectors point to the vertices of two hexagons, one rotated
by an angleuh,30° with respect to the other.

MULTIFREQUENCY CONTROL OF FARADAY WAVE PATTERNS PHYSICAL REVIEW E70, 066206(2004)

066206-13



from the trivial state, and the subcritical branch then turns
around in a saddle-node bifurcation at a particular value
f tot= fSN. At a slightly greater forcing strengthfSL. fSN (still
in the subcritical regime), the superlattice pattern is stabi-
lized, and remains stable forf tot. fSL (at least within the
realm of validity of the weakly nonlinear description pro-
vided by the bifurcation equations).

The methodology here is more successful than our previ-
ous attempts at stabilizing superlattice patterns. Our work in
[16] created a spike at only one angle(as opposed to two, as
here) and that in [18] did not parametrically force the
damped mode. By combining multiple resonances with
appropriately chosen phases, we have used Table I to

obtain dramatically increased stabilization of the desired pat-
tern.

C. A conjecture on quasipatterns

The superlattice pattern discussed above belongs to one
intriguing class of complex patterns; another such class is
that of quasipatterns. Quasipatterns are the continuum ana-
logs of quasicrystals. Unlike the superlattice patterns, they
are not spatially periodic. However, their Fourier spectra
possess discrete rotational symmetry. Quasipatterns have
been observed in a number of Faraday wave experiments,
including [6,7,37].

A common approach to investigating certain types of qua-
sipatterns has been to describe them using amplitude equa-
tions for the evolution of a number of critical modes equally
spaced around a critical circle in Fourier space; see, for ex-
ample,[21,38,39]. Recent work in[40] elucidates the tech-
nical problems with this approach. The issue is that through
nonlinear interactions, the critical modes generate other
modes which come arbitrarily close to the critical circle, and
a center manifold reduction to a finite dimensional bifurca-
tion problem is not possible. The usual amplitude equa-
tion description is thus without a rigorous mathematical
foundation. Nonetheless, our basic physical ideas should
still apply to quasipatterns. We may tune our forcing
function to drive energy into modes corresponding to
different resonant angles and thus favor the corresponding
patterns.

For example, here we suggest a forcing function which
may favor a 14-fold quasipattern, which, to date, has not
been observed in Faraday wave experiments. We use the
methodology outlined in the previous example. The 14-fold
quasipattern involves seven standing wave modes, and hence
six angles between 0° and 180°. We wish to arrange
for bres.0 at the anglesu j = js180°d /7, j =1, . . . ,3. This
actually accounts for all of the angles in the quasipat-
tern, since as previously mentioned,bsud=bs180°−ud
=bs180° +ud by symmetry. We choose a seven-frequency
forcing function with frequencies sm,n,p,q,r ,s,td
=s12,17,20,27,10,16,30d and fix the capillarity parameter
G0=28.8 in Eq.(36). The V=n−m=5, V=p−m=8, andV
=q−m=15 difference frequency modes are parametrically
forced by the sr ,s,td=s10,16,30d components and have
resonance angles[estimated using the dispersion relation
given by Eq. (42)] of 128.62°=180°−51.38°, 103.28°
=180°−76.72°, and 27.60°, respectively. These modes will
therefore produce spikes inbsud very near the desired angles
of 51.43°, 77.14°, and 25.71°. We take forcing frequency
ratios ufnu / ufmu=1.2, ufpu / ufmu=1.6, ufqu / ufmu=2.8, uf ru / ufmu
=0.62, ufsu / ufmu=1.2, and uf tu / ufmu=2.2 and computebsud
from Eq. (36). The results are shown in Fig. 12. The dotted
line corresponds to the naive choice of zero for all of the
forcing phases. The solid line corresponds to the optimized
case prescribed by Table I, namely,fr =fs=ft=90°, which
leads to larger resonant contributions tobsud. In both cases,
the three difference frequency modes cause spikes inbsud at
the desired angles.

FIG. 11. (a) Coupling coefficient for computing superlattice-I
pattern stability. We use three-frequency forcing withsm,n,pd
=s8,10,11d. The two small “bumps” at sun−m,up−md
=s20.3° ,39.9°d are due to resonance with the modes oscillating
with the difference frequenciesV=n−m and V=p−m. No super-
lattice patterns are stable.(b) Like (a), but with additional forcing
frequency componentssq,rd=s4,6d which parametrically force the
difference frequency modes. The result from(a) is duplicated as a
dotted line for comparison. The two bumps become two very large
spikes, and the superlattice pattern with angleuh.20.3° is stabi-
lized. For (a) and (b), we have added vertical arrows to guide the
eye to the effects at the resonant angles. The fluid parameters used
are g=0.1 andG0=5.26. The forcing amplitude ratios and phases
used are given in the text. The region around 60° corresponds to a
hexagonal interaction not captured by our calculation, and thus has
been removed.
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VI. CONCLUSIONS

In this paper, we have used methods of equivariant bifur-
cation theory to study resonant triad interactions in Faraday
waves. We have shown how the spatial and weakly broken
temporal symmetries(or alternatively, parameter symme-
tries) may be used to determine which spatiotemporally reso-
nant damped modes play the most important roles in pattern
selection. The symmetry-based analysis not only identifies
the modes, but tells us how the strength of the triad interac-
tions depends on the frequencies, amplitudes, and relative
phases of the various components in an arbitrary multifre-
quency periodic forcing function. In many cases we know
whether the interaction has an enhancing or suppressing ef-
fect on associated patterns. The study in this paper consti-
tutes a somewhat unusual situation(we know of only a few
others, such as[41]) because significant information about
the bifurcation coefficients, namely, their scaling with
respect to the physical parameters and in some cases their
sign, can be obtained without resorting to calculations

using the governing equations. This is possible because
of the structure imposed by the parameter symmetries of the
problem.

We have applied our results to impulsively forced and
multifrequency forced Faraday waves in several examples,
emphasizing how the resonant interactions can be controlled
by choosing judiciously the parameters in the forcing func-
tion fstd. An appropriate choice allows one to stabilize com-
plex patterns such as the superlattice-I pattern examined in
Sec. V. Techniques based on Table I may be useful to experi-
mentalists wishing to observe specific patterns in the labora-
tory.

The results in this paper tie together many of the ideas
explored in[16,18,20,23] and provide an exhaustive descrip-
tion of the important resonant triad interactions for Faraday
waves(with sufficiently weak damping). Recent experiments
used multifrequency forcing of Faraday waves in order to
control the transition between different nonlinear states and
to suppress spatiotemporal disorder[42]. In particular, the
authors of[42] apply a perturbing third frequency to two-
frequency forced patterns near a codimension-two point and
interpret their results in terms of the temporal parities of the
dominant forcing frequency and the perturbing frequency.
Our results in Table I suggest that the frequencies themselves
(not just the parity) and the forcing phases are important,
thus providing an alternative approach for controlling pat-
terns.

It will be interesting to extend our work to other systems.
For example, in vertically vibrated convection, Boussinesq
symmetry prohibits three-wave interactions[43]. Four-wave
interactions are the important nonlinear interactions, and are
the building blocks of complex square superlattice patterns
observed in[44,45]. Applying techniques similar to those
developed here might yield insight into this pattern selection
mechanism as well.
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